Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 18011, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093513

RESUMO

Synaptotagmin interaction with anionic lipid (phosphatidylserine/phosphatidylinositol) containing membranes, both in the absence and presence of calcium ions (Ca2+), is critical to its central role in orchestrating neurotransmitter release. The molecular surfaces involved, namely the conserved polylysine motif in the C2B domain and Ca2+-binding aliphatic loops on both C2A and C2B domains, are known. Here we use surface force apparatus combined with systematic mutational analysis of the functional surfaces to directly measure Syt1-membrane interaction and fully map the site-binding energetics of Syt1 both in the absence and presence of Ca2+. By correlating energetics data with the molecular rearrangements measured during confinement, we find that both C2 domains cooperate in membrane binding, with the C2B domain functioning as the main energetic driver, and the C2A domain acting as a facilitator.

2.
J Phys Chem Lett ; 10(18): 5530-5535, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31365261

RESUMO

Nuclear quantum effects (NQEs) in water arise due to delocalization, zero-point energy (ZPE), and quantum tunneling of protons. Whereas quantum tunneling is significant only at low temperatures, proton delocalization and ZPE influence the properties of water at normal temperature and pressure (NTP), giving rise to isotope effects. However, the consequences of NQEs for interfaces of water with hydrophobic media, such as perfluorocarbons, have remained largely unexplored. Here, we reveal the existence and signature of NQEs modulating hydrophobic surface forces at NTP. Our experiments demonstrate that the attractive hydrophobic forces between molecularly smooth and rigid perfluorinated surfaces in nanoconfinement are ≈10% higher in H2O than in D2O, even though the contact angles of H2O and D2O on these surfaces are indistinguishable. Our molecular dynamics simulations show that the underlying cause of the difference includes the destabilizing effect of ZPE on the librational motions of interfacial H2O, which experiences larger quantum effects than D2O.

3.
Langmuir ; 35(48): 15500-15514, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31362502

RESUMO

Advances in the research of intermolecular and surface interactions result from the development of new and improved measurement techniques and combinations of existing techniques. Here, we present a new miniature version of the surface forces apparatus-the µSFA-that has been designed for ease of use and multimodal capabilities with the retention of the capabilities of other SFA models including accurate measurements of the surface separation distance and physical characterization of dynamic and static physical forces (i.e., normal, shear, and friction) and interactions (e.g., van der Waals, electrostatic, hydrophobic, steric, and biospecific). The small physical size of the µSFA, compared to previous SFA models, makes it portable and suitable for integration into commercially available optical and fluorescence light microscopes, as demonstrated here. The large optical path entry and exit ports make it ideal for concurrent force measurements and spectroscopy studies. Examples of the use of the µSFA in combination with surface plasmon resonance (SPR) and Raman spectroscopy measurements are presented. Because of the short working distance constraints associated with Raman spectroscopy, an interferometric technique was developed and applied to calculate the intersurface separation distance based on Newton's rings. The introduction of the µSFA will mark a transition in SFA usage from primarily physical characterization to concurrent physical characterization with in situ chemical and biological characterization to study interfacial phenomena, including (but not limited to) molecular adsorption, fluid flow dynamics, the determination of surface species and morphology, and (bio)molecular binding kinetics.

4.
Langmuir ; 35(48): 15543-15551, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31310142

RESUMO

Modern interfacial science is increasingly multidisciplinary. Unique insight into interfacial interactions requires new multimodal techniques for interrogating surfaces with simultaneous complementary physical and chemical measurements. Here, we describe the design and testing of a microscope that incorporates a miniature surface forces apparatus (µSFA) in sphere vs flat geometry for force-distance measurements, while simultaneously acquiring Raman spectra of the confined zone. The simple optical setup isolates independent optical paths for (i) the illumination and imaging of Newton's rings and (ii) Raman scattering excitation and efficient signal collection. We benchmark the methodology by examining Teflon thin films in asymmetric (Teflon-water-glass) and symmetric (Teflon-water-Teflon) configurations. Water is observed near the Teflon-glass interface with nanometer-scale sensitivity in both the distance and Raman signals. We perform chemically resolved, label-free imaging of confined contact regions between Teflon and glass surfaces immersed in water. Remarkably, we estimate that the combined approach enables vibrational spectroscopy with single water monolayer sensitivity within minutes. Altogether, the Raman-µSFA allows exploration of molecular confinement between surfaces with chemical selectivity and correlation with interaction forces.

5.
Nanotechnology ; 30(19): 195502, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30695757

RESUMO

Surface force apparatus (SFA) allows accurate resolving of the interfacial properties of fluids confined between extended surfaces. The accuracy of the SFA makes it an ubiquitous tool for the nanoscale mechanical characterization of soft matter systems. The SFA traditionally measures force-distance profiles through interferometry with subnanometric distance precision. However, these techniques often require a dedicated and technically demanding experimental setup, and there remains a need for versatile and simple force-distance measurement tools. Here we present a MicroMegascope based dynamic SFA capable of accurate measurement of the dynamic force profile of a liquid confined between a millimetric sphere and a planar substrate. Normal and shear mechanical impedance is measured within the classical frequency modulation framework. We measure rheological and frictional properties from micrometric to molecular confinement. We also highlight the resolution of small interfacial features such as ionic liquid layering. This apparatus shows promise as a versatile force-distance measurement device for exotic surfaces or extreme environments.

6.
FEBS Lett ; 592(9): 1497-1506, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29578584

RESUMO

Synaptotagmin-1 (Syt1) is the primary calcium sensor (Ca2+ ) that mediates neurotransmitter release at the synapse. The tandem C2 domains (C2A and C2B) of Syt1 exhibit functionally critical, Ca2+ -dependent interactions with the plasma membrane. With the surface forces apparatus, we directly measure the binding energy of membrane-anchored Syt1 to an anionic membrane and find that Syt1 binds with ~6 kB T in EGTA, ~10 kB T in Mg2+ and ~18 kB T in Ca2+ . Molecular rearrangements measured during confinement are more prevalent in Ca2+ and Mg2+ and suggest that Syt1 initially binds through C2B, then reorients the C2 domains into the preferred binding configuration. These results provide energetic and mechanistic details of the Syt1 Ca2+ -activation process in synaptic transmission.


Assuntos
Cálcio/farmacologia , Membrana Celular/metabolismo , Magnésio/farmacologia , Sinaptotagmina I/metabolismo , Relação Dose-Resposta a Droga , Ligação Proteica/efeitos dos fármacos , Propriedades de Superfície , Termodinâmica
7.
J Phys Chem Lett ; 9(7): 1528-1533, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29521507

RESUMO

Over recent decades, lipid membranes have become standard models for examining the biophysics and biochemistry of cell membranes. Interrogation of lipid domains within biomembranes is generally done with fluorescence microscopy via exogenous chemical probes. However, fluorophores have limited partitioning tunability, with the majority segregating into the liquid-disordered phase, and fluorescence only strictly reports on the small percentage of tagged lipids. We present simple, label-free imaging of domain formation in lipid monolayers, with chemical selectivity in unraveling lipid and cholesterol composition in different domain types. Exploiting conventional vibrational contrast in spontaneous Raman imaging, combined with chemometrics analysis, allows for examination of ternary systems containing saturated lipids, unsaturated lipids, and cholesterol. We confirm features commonly observed by fluorescence microscopy and provide a quantitative thermodynamic analysis of cholesterol distribution at the single-monolayer level.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Membranas Artificiais , Fosfatidilcolinas/química , Microdomínios da Membrana/química , Análise Espectral Raman , Termodinâmica
8.
Proc Natl Acad Sci U S A ; 112(34): 10708-13, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26261313

RESUMO

Dimethyl sulfoxide (DMSO) is a common solvent and biological additive possessing well-known utility in cellular cryoprotection and lipid membrane permeabilization, but the governing mechanisms at membrane interfaces remain poorly understood. Many studies have focused on DMSO-lipid interactions and the subsequent effects on membrane-phase behavior, but explanations often rely on qualitative notions of DMSO-induced dehydration of lipid head groups. In this work, surface forces measurements between gel-phase dipalmitoylphosphatidylcholine membranes in DMSO-water mixtures quantify the hydration- and solvation-length scales with angstrom resolution as a function of DMSO concentration from 0 mol% to 20 mol%. DMSO causes a drastic decrease in the range of the steric hydration repulsion, leading to an increase in adhesion at a much-reduced intermembrane distance. Pulsed field gradient NMR of the phosphatidylcholine (PC) head group analogs, dimethyl phosphate and tetramethylammonium ions, shows that the ion hydrodynamic radius decreases with increasing DMSO concentration up to 10 mol% DMSO. The complementary measurements indicate that, at concentrations below 10 mol%, the primary effect of DMSO is to decrease the solvated volume of the PC head group and that, from 10 mol% to 20 mol%, DMSO acts to gradually collapse head groups down onto the surface and suppress their thermal motion. This work shows a connection between surface forces, head group conformation and dynamics, and surface water diffusion, with important implications for soft matter and colloidal systems.


Assuntos
Dimetil Sulfóxido/química , Hidrodinâmica , Bicamadas Lipídicas/química , Ressonância Magnética Nuclear Biomolecular , Água/química , 1,2-Dipalmitoilfosfatidilcolina/química , Difusão , Géis , Lipídeos de Membrana/química , Modelos Químicos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Compostos Organofosforados/química , Concentração Osmolar , Compostos de Amônio Quaternário/química , Solubilidade , Solventes/química , Propriedades de Superfície , Tensão Superficial
9.
Langmuir ; 31(29): 8013-21, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26135325

RESUMO

We have measured and characterized how three classes of surface-active molecules self-assemble at, and modulate the interfacial forces between, a negatively charged mica surface and a hydrophobic end-grafted polydimethylsiloxane (PDMS) polymer surface in solution. We provide a broad overview of how chemical and structural properties of surfactant molecules result in different self-assembled structures at polymer and mineral surfaces, by studying three characteristic surfactants: (1) an anionic aliphatic surfactant, sodium dodecyl sulfate (SDS), (2) a cationic aliphatic surfactant, myristyltrimethylammonium bromide (MTAB), and (3) a silicone polyelectrolyte with a long-chain PDMS midblock and multiple cationic end groups. Through surface forces apparatus measurements, we show that the separate addition of three surfactants can result in interaction energies ranging from fully attractive to fully repulsive. Specifically, SDS adsorbs at the PDMS surface as a monolayer and modifies the monotonic electrostatic repulsion to a mica surface. MTAB adsorbs at both the PDMS (as a monolayer) and the mica surface (as a monolayer or bilayer), resulting in concentration-dependent interactions, including a long-range electrostatic repulsion, a short-range steric hydration repulsion, and a short-range hydrophobic attraction. The cationic polyelectrolyte adsorbs as a monolayer on the PDMS and causes a long-range electrostatic attraction to mica, which can be modulated to a monotonic repulsion upon further addition of SDS. Therefore, through judicious selection of surfactants, we show how to modify the magnitude and sign of the interaction energy at different separation distances between hydrophobic and hydrophilic surfaces, which govern the static and kinetic stability of colloidal dispersions. Additionally, we demonstrate how the charge density of silicone polyelectrolytes modifies both their self-assembly at polymer interfaces and the robust adhesion of thin PDMS films to target surfaces.

10.
Nat Commun ; 6: 7238, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26006266

RESUMO

Membrane fusion is the core process in membrane trafficking and is essential for cellular transport of proteins and other biomacromolecules. During protein-mediated membrane fusion, membrane proteins are often excluded from the membrane-membrane contact, indicating that local structural transformations in lipid domains play a major role. However, the rearrangements of lipid domains during fusion have not been thoroughly examined. Here using a newly developed Fluorescence Surface Forces Apparatus (FL-SFA), migration of liquid-disordered clusters and depletion of liquid-ordered domains at the membrane-membrane contact are imaged in real time during hemifusion of model lipid membranes, together with simultaneous force-distance and lipid membrane thickness measurements. The load and contact time-dependent hemifusion results show that the domain rearrangements decrease the energy barrier to fusion, illustrating the significance of dynamic domain transformations in membrane fusion processes. Importantly, the FL-SFA can unambiguously correlate interaction forces and in situ imaging in many dynamic interfacial systems.


Assuntos
Membrana Celular/fisiologia , Bicamadas Lipídicas , Fusão de Membrana , Imagem Óptica/instrumentação , Fenômenos Biomecânicos , Espectrometria de Fluorescência/instrumentação
11.
Langmuir ; 31(7): 2051-64, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25072835

RESUMO

We review direct force measurements on a broad class of hydrophobic and hydrophilic surfaces. These measurements have enabled the development of a general interaction potential per unit area, W(D) = -2γ(i)Hy exp(-D/D(H)) in terms of a nondimensional Hydra parameter, Hy, that applies to both hydrophobic and hydrophilic interactions between extended surfaces. This potential allows one to quantitatively account for additional attractions and repulsions not included in the well-known combination of electrostatic double layer and van der Waals theories, the so-called Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The interaction energy is exponentially decaying with decay length D(H) ≈ 0.3-2 nm for both hydrophobic and hydrophilic interactions, with the exact value of D(H) depending on the precise system and conditions. The pre-exponential factor depends on the interfacial tension, γ(i), of the interacting surfaces and Hy. For Hy > 0, the interaction potential describes interactions between partially hydrophobic surfaces, with the maximum hydrophobic interaction (i.e., two fully hydrophobic surfaces) corresponding to Hy = 1. Hydrophobic interactions between hydrophobic monolayer surfaces measured with the surface forces apparatus (SFA) are shown to be well described by the proposed interaction potential. The potential becomes repulsive for Hy < 0, corresponding to partially hydrophilic (hydrated) interfaces. Hydrated surfaces such as mica, silica, and lipid bilayers are discussed and reviewed in the context of the values of Hy appropriate for each system.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Termodinâmica
12.
Small ; 11(17): 2058-68, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25504803

RESUMO

Surfactant self-assembly on surfaces is an effective way to tailor the complex forces at and between hydrophobic-water interfaces. Here, the range of structures and forces that are possible at surfactant-adsorbed hydrophobic surfaces are demonstrated: certain long-chain bolaform surfactants-containing a polydimethylsiloxane (PDMS) mid-block domain and two cationic α, ω-quarternary ammonium end-groups-readily adsorb onto thin PDMS films and form dynamically fluctuating nanostructures. Through measurements with the surface forces apparatus (SFA), it is found that these soft protruding nanostructures display polymer-like exploration behavior at the PDMS surface and give rise to a long-ranged, temperature- and rate-dependent attractive bridging force (not due to viscous forces) on approach to a hydrophilic bare mica surface. Coulombic interactions between the cationic surfactant end-groups and negatively-charged mica result in a rate-dependent polymer bridging force during separation as the hydrophobic surfactant mid-blocks are pulled out from the PDMS interface, yielding strong adhesion energies. Thus, (i) the versatile array of surfactant structures that may form at hydrophobic surfaces is highlighted, (ii) the need to consider the interaction dynamics of such self-assembled polymer layers is emphasized, and (iii) it is shown that long-chain surfactants can promote robust adhesion in aqueous solutions.

13.
J Phys Chem B ; 117(51): 16369-87, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24229092

RESUMO

We review recent developments in experimental techniques that simultaneously combine measurements of the interaction forces or energies between two extended surfaces immersed in electrolyte solutions-primarily aqueous-with simultaneous monitoring of their (electro)chemical reactions and controlling the electrochemical surface potential of at least one of the surfaces. Combination of these complementary techniques allows for simultaneous real time monitoring of angstrom level changes in surface thickness and roughness, surface-surface interaction energies, and charge and mass transferred via electrochemical reactions, dissolution, and adsorption, and/or charging of electric double layers. These techniques employ the surface forces apparatus (SFA) combined with various "electrochemical attachments" for in situ measurements of various physical and (electro)chemical properties (e.g., cyclic voltammetry), optical imaging, and electric potentials and currents generated naturally during an interaction, as well as when electric fields (potential differences) are applied between the surfaces and/or solution-in some cases allowing for the chemical reaction equation to be unambiguously determined. We discuss how the physical interactions between two different surfaces when brought close to each other (<10 nm) can affect their chemistry, and suggest further extensions of these techniques to biological systems and simultaneous in situ spectroscopic measurements for chemical analysis.


Assuntos
Eletroquímica/métodos , Adsorção , Eletricidade , Líquidos Iônicos/química , Fenômenos Mecânicos , Oxirredução
14.
ACS Nano ; 7(11): 10094-104, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24138532

RESUMO

We have synthesized model hydrophobic silicone thin films on gold surfaces by a two-step covalent grafting procedure. An amino-functionalized gold surface reacts with monoepoxy-terminated polydimethylsiloxane (PDMS) via a click reaction, resulting in a covalently attached nanoscale thin film of PDMS, and the click chemistry synthesis route provides great selectivity, reproducibility, and stability in the resulting model hydrophobic silicone thin films. The asymmetric interaction forces between the PDMS thin films and mica surfaces were measured with the surface forces apparatus in aqueous sodium chloride solutions. At an acidic pH of 3, attractive interactions are measured, resulting in instabilities during both approach (jump-in) and separation (jump-out from adhesive contact). Quantitative analysis of the results indicates that the Derjaguin-Landau-Verwey-Overbeek theory alone, i.e., the combination of electrostatic repulsion and van der Waals attraction, cannot fully describe the measured forces and that the additional measured adhesion is likely due to hydrophobic interactions. The surface interactions are highly pH-dependent, and a basic pH of 10 results in fully repulsive interactions at all distances, due to repulsive electrostatic and steric-hydration interactions, indicating that the PDMS is negatively charged at high pH. We describe an interaction potential with a parameter, known as the Hydra parameter, that can account for the extra attraction (low pH) due to hydrophobicity as well as the extra repulsion (high pH) due to hydrophilic (steric-hydration) interactions. The interaction potential is general and provides a quantitative measure of interfacial hydrophobicity/hydrophilicity for any set of interacting surfaces in aqueous solution.


Assuntos
Silicones/química , Adsorção , Silicatos de Alumínio/química , Materiais Biocompatíveis/química , Dimetilpolisiloxanos/química , Ouro/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Potenciais da Membrana , Nanotecnologia , Polímeros/química , Soluções , Eletricidade Estática , Propriedades de Superfície , Água/química
15.
ACS Nano ; 6(12): 11059-65, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23186074

RESUMO

Hydrophobic interactions constitute one of the most important types of nonspecific interactions in biological systems, which emerge when water molecules rearrange as two hydrophobic species come close to each other. The prediction of hydrophobic interactions at the level of nanoparticles (Brownian objects) remains challenging because of uncontrolled diffusive motion of the particles. We describe here a general methodology for solvent-induced, reversible self-assembly of gold nanoparticles into 3D clusters with well-controlled sizes. A theoretical description of the process confirmed that hydrophobic interactions are the main driving force behind nanoparticle aggregation.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Resinas Acrílicas/química , Micelas , Poliestirenos/química , Solventes/química , Tensoativos/química
16.
J Am Chem Soc ; 134(3): 1746-53, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22176530

RESUMO

A molecular level understanding of interaction forces and dynamics between asymmetric apposing surfaces (including end-functionalized polymers) in water plays a key role in the utilization of molecular structures for smart and functional surfaces in biological, medical, and materials applications. To quantify interaction forces and binding dynamics between asymmetric apposing surfaces in terms of their chemical structure and molecular design we developed a novel surface forces apparatus experiment, using self-assembled monolayers (SAMs) on atomically smooth gold substrates. Varying the SAM head group functionality allowed us to quantitatively identify, rationalize, and therefore control which interaction forces dominated between the SAM surfaces and a surface coated with short-chain, amine end-functionalized polyethylene glycol (PEG) polymers extending from a lipid bilayer. Three different SAM-terminations were chosen for this study: (a) carboxylic acid, (b) alcohol, and (c) methyl head group terminations. These three functionalities allowed for the quantification of (a) specific acid-base bindings, (b) steric effects of PEG chains, and (c) adhesion of hydrophobic segments of the polymer backbone, all as a function of the solution pH. The pH-dependent acid-base binding appears to be a specific and charge mediated hydrogen bonding interaction between oppositely charged carboxylic acid and amine functionalities, at pH values above the acid pK(A) and below the amine pK(A). The long-range electrostatic "steering" of acid and base pairs leads to remarkably rapid binding formation and high binding probability of this specific binding even at distances close to full extension of the PEG tethers, a result which has potentially important implications for protein folding processes and enzymatic catalysis.


Assuntos
Bicamadas Lipídicas/química , Polietilenoglicóis/química , Ouro/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Eletricidade Estática , Propriedades de Superfície
17.
Proc Natl Acad Sci U S A ; 108(38): 15699-704, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21896718

RESUMO

We establish and quantify correlations among the molecular structures, interaction forces, and physical processes associated with light-responsive self-assembled surfactant monolayers or bilayers at interfaces. Using the surface forces apparatus (SFA), the interaction forces between adsorbed monolayers and bilayers of an azobenzene-functionalized surfactant can be drastically and controllably altered by light-induced conversion of trans and cis molecular conformations. These reversible conformation changes affect significantly the shape of the molecules, especially in the hydrophobic region, which induces dramatic transformations of molecular packing in self-assembled structures, causing corresponding modulation of electrostatic double layer, steric hydration, and hydrophobic interactions. For bilayers, the isomerization from trans to cis exposes more hydrophobic groups, making the cis bilayers more hydrophobic, which lowers the activation energy barrier for (hemi)fusion. A quantitative and general model is derived for the interaction potential of charged bilayers that includes the electrostatic double-layer force of the Derjaguin-Landau-Verwey-Overbeek theory, attractive hydrophobic interactions, and repulsive steric-hydration forces. The model quantitatively accounts for the elastic strains, deformations, long-range forces, energy maxima, adhesion minima, as well as the instability (when it exists) as two bilayers breakthrough and (hemi)fuse. These results have several important implications, including quantitative and qualitative understanding of the hydrophobic interaction, which is furthermore shown to be a nonadditive interaction.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Tensoativos/química , Adsorção , Algoritmos , Cinética , Luz , Bicamadas Lipídicas/metabolismo , Modelos Químicos , Modelos Moleculares , Conformação Molecular/efeitos da radiação , Compostos de Amônio Quaternário/química , Propriedades de Superfície , Tensoativos/farmacocinética
18.
Langmuir ; 26(18): 14458-65, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20735021

RESUMO

The interactions of supported cationic surfactant bilayers and the effects of nonadsorbing cationic polyelectrolytes on these interactions were studied using the surface forces apparatus (SFA) technique. Bilayers of the cationic surfactant di(tallow ethyl ester) dimethyl ammonium chloride (DEEDMAC) were deposited on mica surfaces using the Langmuir-Blodgett technique, and the interactions between the bilayers were measured in various salt, nonionic polymer (PEG), and cationic polyelectrolyte solutions at different polymer molecular weights and concentrations. The forces between the bilayers in CaCl(2) solution are purely repulsive and follow the DLVO theory quantitatively down to bilayer separations of ∼2 nm. Addition of nonadsorbing polymer or polyelectrolyte has a number of effects on the interactions including the induction of a depletion-attraction between the bilayers and screening of the double-layer repulsion due to the added ions in the solution from the polyelectrolyte. The experimental results are shown to agree well with standard theories of depletion attraction and double-layer screening associated with dissolved polyelectrolyte. We also observed significant time and rate effects on measuring the equilibrium bilayer-bilayer interactions possibly due to the unexpectedly long times (>1 min) associated with the charge regulation of the bilayer surfaces. Implications for the interactions and stability of vesicle dispersions, i.e., of free rather than supported bilayers, in polymer solutions are discussed.


Assuntos
Polímeros/química , Tensoativos/química , Cloreto de Cálcio/química , Eletrólitos/química , Cinética , Compostos de Amônio Quaternário/química , Eletricidade Estática , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...